
Intro to (a Subset of) Concepts of Rust PL

Jingqi Chen

April 1, 2024

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 1 / 27



Contents

This will not cover:
1 Syntax of Rust, e.g. for, if, fn, let, etc. You can read The Rust

Programming Language.

This will cover:
1 Resource acquisition is initialization, RAII, comparing to C#.
2 Smart pointers.

Some things should be covered (but not today):
1 RTTI, comparing to C#.
2 Generic, comparing to C++.
3 Compile-time function execution, comparing to C++.

But to follow the tradition:

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 2 / 27

https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/title-page.html


use std::io;

fn main() {
let mut s = String::new();
io::stdin().read_line(&mut s).unwrap();
let a: i32 = s.trim().parse().unwrap();

s.clear();

io::stdin().read_line(&mut s).unwrap();
let b: i32 = s.trim().parse().unwrap();

let sum = a + b;
println!("{}", sum);

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 3 / 27



Resource acquisition is initialization, RAII

1 A resource is anything that has to be acquired and released after use,
regardless of explicitly or implicitly.

2 Examples are memory, locks, sockets, thread handles, and file handles.
3 A good resource management system handles all kinds of resources.
4 Leaks must be avoided in any long-running systems, but excessive resource

retention can be almost as bad as a leak.

Some designs about resource management:
1 No abstraction at all: C, etc
2 RAII: C++, Rust, etc
3 GC: C#, Java, etc

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 4 / 27



Starting with no abstraction:

void func() {
// allocate 100-size char array in stack
char x[100];

// allocate 100-size char array in heap
char* y = malloc(sizeof(char) * 100);

// free it before return
free(y);

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 5 / 27



What if?

void func() {
// allocate 100-size char array in stack
char x[100];

// this is just a compile warning for gcc 11.4
// warning: ‘free’ called on unallocated object ‘x’
// segmentation fault (core dumped)
// and there could be no warning at all for compilers
free(x);

// allocate 100-size char array in heap
char* y = malloc(sizeof(char) * 100);

// no free
// memory leak
// free(y);

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 6 / 27



In the real world:

// a very complex function
// in a deep function calling chain
// with early returns
// x and y are passed as pointer

// no info of whether in stack or heap (can or cannot free)
// no info of ownership (should or should not free)
void func(char* x, char* y) {

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 7 / 27



To solve this issue, ownership design would be straight forward.

As only the owner knows when it should be free (or destructed / garbage collected).

Specifically for Rust:

Each value in Rust has an owner.
There can only be one owner at a time.
When the owner goes out of scope, the value will be dropped.

And:

There are move and reference(borrowing).
There are smart pointers.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 8 / 27



Move:

The ownership of a variable follows the same pattern every time: assigning a value
to another variable moves it. When a variable that includes data on the heap goes
out of scope, the value will be cleaned up by drop unless ownership of the data has
been moved to another variable.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 9 / 27



let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);
// compile failure!
// as = is default to `move` in rust for complex types!

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 10 / 27



fn main() {
let s1 = String::from("hello");

// move the ownership to calculate_length
let (s2, len) = calculate_length(s1);

println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
// len() returns the length of a String
let length = s.len();

// move the ownership back
(s, length)

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 11 / 27



Reference:

A reference is like a pointer in that it’s an address we can follow to access the data
stored at that address; that data is owned by some other variable. Unlike a pointer,
a reference is guaranteed to point to a valid value of a particular type for the life of
that reference.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 12 / 27



fn main() {
let s1 = String::from("hello");

let len = calculate_length(&s1);

println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
s.len()

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 13 / 27



Note: the closure works the same with function, which could capture the variable
via ref, mutable ref, or move.

Some interesting tiny design choices:
1 Reference is immutable by default, which is opposite of C++.
2 Conpulsory compile-time check of lifetime(scope) & multi mutable ref, which

could prevent issues (e.g. dangling pointers / data races), which is not
conpulsory of C++. But the check can be bypassed via RefCell or Unsafe.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 14 / 27



RAII:
1 There is almost zero overhead. The ideal situation is the releasing happens

right after it is no longer needed.
2 It can goes wrong in runtime (and it is impossible to detect all the issues

during compile-time), crash (dangling pointers), memory leak (cyclic ref), etc.
3 More complex for lock free concurrent environment, e.g. Hazard pointer.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 15 / 27

https://en.wikipedia.org/wiki/Hazard_pointer


Comparsions with GC:
1 GC is not deterministic, and there is much more overhead. (Recall: GC makes

trade-off between footprint, throughput, latency).
2 GC can only collect managed resources. (Recall: Dispose of C#).

Further topics of performance difference when there is runtime or not:
1 Expected lifetime of each allocation. (or the ratio of IO/Compute)
2 Performance optimization methods brought by runtime:

1 PGO, LTO.
3 How modern GC makes the trade-off:

1 The Pauseless GC Algorithm
2 JEP 439

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 16 / 27

https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf
https://openjdk.org/jeps/439


Smart pointers

References only borrow data, in many cases, smart pointers own the data they
point to.

Box<T> for allocating values on the heap
Rc<T>, a reference counting type that enables multiple ownership
Ref<T> and RefMut<T>, accessed through RefCell<T>, a type that enforces
the borrowing rules at runtime instead of compile time

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 17 / 27



Box<T> is the Rust version of unique_ptr.

It represents exclusive ownership. Boxes allow you to store data on the heap rather
than the stack.

enum List { Cons(i32, List), Nil, }

use crate::List::{Cons, Nil};

fn main() {
let list = Cons(1, Cons(2, Cons(3, Nil)));
// fail! recursive type `List` has infinite size
// fail to put in stack

}

// ----- the following would do -----
enum List {

Cons(i32, Box<List>),
Nil,

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 18 / 27



Rc<T> is the Rust version of shared_ptr, but immutable.

enum List {
Cons(i32, Rc<List>),
Nil,

}

use crate::List::{Cons, Nil};
use std::rc::Rc;

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 19 / 27



Note:
1 The Rc::clone only increments the reference count! It is different with

.clone().
2 Rc<T> allows only immutable ref, as “multiple mutable borrows to the same

place can cause data races and inconsistencies”. You may need RefCell<T>
for multi mutable ref.

3 Rc<T> the increase / decrease of count is NOT thread safe (read: atomic)! If
you need concurrency, use Arc<T>. This is a interesting design choice.

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 20 / 27



What is reference counting?

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
println!("count after creating a = {}",

Rc::strong_count(&a));
let b = Cons(3, Rc::clone(&a));
println!("count after creating b = {}",

Rc::strong_count(&a));
{

let c = Cons(4, Rc::clone(&a));
println!("count after creating c = {}",

Rc::strong_count(&a));
}
println!("count after c goes out of scope = {}",

Rc::strong_count(&a));
}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 21 / 27



/*
$ cargo run

Compiling cons-list v0.1.0 (file:///projects/cons-list)
Finished dev [unoptimized + debuginfo] target(s) in 0.45s
Running `target/debug/cons-list`

count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2
*/

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 22 / 27



RefCell<T> is used for Interior mutability, which is a design pattern in Rust that
allows you to mutate data even when there are immutable references to that data.

With references and Box<T>, the borrowing rules’ invariants are enforced at
compile time. With RefCell<T>, these invariants are enforced at runtime. So,
the program will panic rather than compile failure.

RefCell<T> is needed as, it is impossible to detect all the issues during
compile-time (Recall: The halting problem is undecidable).

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 23 / 27



#[derive(Debug)]
enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),
Nil,

}

use crate::List::{Cons, Nil};
use std::cell::RefCell;
use std::rc::Rc;

fn main() {
let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;
}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 24 / 27



Note:
1 Recall const_cast of C++.
2 Using Rc<T> with RefCell<T>, we finally get the full equivalent of

shared_ptr of C++. So we can create the cyclic ref to leak the memory!

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 25 / 27



fn main() {
let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

if let Some(link) = a.tail() {
*link.borrow_mut() = Rc::clone(&b);

}

println!("a next item = {:?}", a.tail());
}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 26 / 27



But how can we break the cycle? Weak<T> would be the solution. Instead of
creating the cycle, checking if the value has already been dropped in runtime is
needed. (Recall: weak_ptr of C++).

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 27 / 27


