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Contents

This will not cover:
1 Syntax of Rust, e.g. for, if, fn, let, etc. You can read The Rust

Programming Language.

This will cover:
1 Resource acquisition is initialization, RAII, comparing to C#.
2 Smart pointers.

Some things should be covered (but not today):
1 RTTI, comparing to C#.
2 Generic, comparing to C++.
3 Compile-time function execution, comparing to C++.

But to follow the tradition:
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use std::io;

fn main() {
let mut s = String::new();
io::stdin().read_line(&mut s).unwrap();
let a: i32 = s.trim().parse().unwrap();

s.clear();

io::stdin().read_line(&mut s).unwrap();
let b: i32 = s.trim().parse().unwrap();

let sum = a + b;
println!("{}", sum);

}
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Resource acquisition is initialization, RAII

1 A resource is anything that has to be acquired and released after use,
regardless of explicitly or implicitly.

2 Examples are memory, locks, sockets, thread handles, and file handles.
3 A good resource management system handles all kinds of resources.
4 Leaks must be avoided in any long-running systems, but excessive resource

retention can be almost as bad as a leak.

Some designs about resource management:
1 No abstraction at all: C, etc
2 RAII: C++, Rust, etc
3 GC: C#, Java, etc

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 4 / 27



Starting with no abstraction:

void func() {
// allocate 100-size char array in stack
char x[100];

// allocate 100-size char array in heap
char* y = malloc(sizeof(char) * 100);

// free it before return
free(y);

}
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What if?

void func() {
// allocate 100-size char array in stack
char x[100];

// this is just a compile warning for gcc 11.4
// warning: ‘free’ called on unallocated object ‘x’
// segmentation fault (core dumped)
// and there could be no warning at all for compilers
free(x);

// allocate 100-size char array in heap
char* y = malloc(sizeof(char) * 100);

// no free
// memory leak
// free(y);

}
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In the real world:

// a very complex function
// in a deep function calling chain
// with early returns
// x and y are passed as pointer

// no info of whether in stack or heap (can or cannot free)
// no info of ownership (should or should not free)
void func(char* x, char* y) {

}
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To solve this issue, ownership design would be straight forward.

As only the owner knows when it should be free (or destructed / garbage collected).

Specifically for Rust:

Each value in Rust has an owner.
There can only be one owner at a time.
When the owner goes out of scope, the value will be dropped.

And:

There are move and reference(borrowing).
There are smart pointers.
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Move:

The ownership of a variable follows the same pattern every time: assigning a value
to another variable moves it. When a variable that includes data on the heap goes
out of scope, the value will be cleaned up by drop unless ownership of the data has
been moved to another variable.
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let s1 = String::from("hello");
let s2 = s1;

println!("{}, world!", s1);
// compile failure!
// as = is default to `move` in rust for complex types!
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fn main() {
let s1 = String::from("hello");

// move the ownership to calculate_length
let (s2, len) = calculate_length(s1);

println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
// len() returns the length of a String
let length = s.len();

// move the ownership back
(s, length)

}
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Reference:

A reference is like a pointer in that it’s an address we can follow to access the data
stored at that address; that data is owned by some other variable. Unlike a pointer,
a reference is guaranteed to point to a valid value of a particular type for the life of
that reference.
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fn main() {
let s1 = String::from("hello");

let len = calculate_length(&s1);

println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {
s.len()

}
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Note: the closure works the same with function, which could capture the variable
via ref, mutable ref, or move.

Some interesting tiny design choices:
1 Reference is immutable by default, which is opposite of C++.
2 Conpulsory compile-time check of lifetime(scope) & multi mutable ref, which

could prevent issues (e.g. dangling pointers / data races), which is not
conpulsory of C++. But the check can be bypassed via RefCell or Unsafe.
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RAII:
1 There is almost zero overhead. The ideal situation is the releasing happens

right after it is no longer needed.
2 It can goes wrong in runtime (and it is impossible to detect all the issues

during compile-time), crash (dangling pointers), memory leak (cyclic ref), etc.
3 More complex for lock free concurrent environment, e.g. Hazard pointer.
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Comparsions with GC:
1 GC is not deterministic, and there is much more overhead. (Recall: GC makes

trade-off between footprint, throughput, latency).
2 GC can only collect managed resources. (Recall: Dispose of C#).

Further topics of performance difference when there is runtime or not:
1 Expected lifetime of each allocation. (or the ratio of IO/Compute)
2 Performance optimization methods brought by runtime:

1 PGO, LTO.
3 How modern GC makes the trade-off:

1 The Pauseless GC Algorithm
2 JEP 439
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Smart pointers

References only borrow data, in many cases, smart pointers own the data they
point to.

Box<T> for allocating values on the heap
Rc<T>, a reference counting type that enables multiple ownership
Ref<T> and RefMut<T>, accessed through RefCell<T>, a type that enforces
the borrowing rules at runtime instead of compile time
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Box<T> is the Rust version of unique_ptr.

It represents exclusive ownership. Boxes allow you to store data on the heap rather
than the stack.

enum List { Cons(i32, List), Nil, }

use crate::List::{Cons, Nil};

fn main() {
let list = Cons(1, Cons(2, Cons(3, Nil)));
// fail! recursive type `List` has infinite size
// fail to put in stack

}

// ----- the following would do -----
enum List {

Cons(i32, Box<List>),
Nil,

}
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Rc<T> is the Rust version of shared_ptr, but immutable.

enum List {
Cons(i32, Rc<List>),
Nil,

}

use crate::List::{Cons, Nil};
use std::rc::Rc;

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let c = Cons(4, Rc::clone(&a));

}

Jingqi Chen Intro to (a Subset of) Concepts of Rust PL April 1, 2024 19 / 27



Note:
1 The Rc::clone only increments the reference count! It is different with

.clone().
2 Rc<T> allows only immutable ref, as “multiple mutable borrows to the same

place can cause data races and inconsistencies”. You may need RefCell<T>
for multi mutable ref.

3 Rc<T> the increase / decrease of count is NOT thread safe (read: atomic)! If
you need concurrency, use Arc<T>. This is a interesting design choice.
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What is reference counting?

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)))));
println!("count after creating a = {}",

Rc::strong_count(&a));
let b = Cons(3, Rc::clone(&a));
println!("count after creating b = {}",

Rc::strong_count(&a));
{

let c = Cons(4, Rc::clone(&a));
println!("count after creating c = {}",

Rc::strong_count(&a));
}
println!("count after c goes out of scope = {}",

Rc::strong_count(&a));
}
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/*
$ cargo run

Compiling cons-list v0.1.0 (file:///projects/cons-list)
Finished dev [unoptimized + debuginfo] target(s) in 0.45s
Running `target/debug/cons-list`

count after creating a = 1
count after creating b = 2
count after creating c = 3
count after c goes out of scope = 2
*/
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RefCell<T> is used for Interior mutability, which is a design pattern in Rust that
allows you to mutate data even when there are immutable references to that data.

With references and Box<T>, the borrowing rules’ invariants are enforced at
compile time. With RefCell<T>, these invariants are enforced at runtime. So,
the program will panic rather than compile failure.

RefCell<T> is needed as, it is impossible to detect all the issues during
compile-time (Recall: The halting problem is undecidable).
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#[derive(Debug)]
enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),
Nil,

}

use crate::List::{Cons, Nil};
use std::cell::RefCell;
use std::rc::Rc;

fn main() {
let value = Rc::new(RefCell::new(5));

let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));

let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let c = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));

*value.borrow_mut() += 10;
}
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Note:
1 Recall const_cast of C++.
2 Using Rc<T> with RefCell<T>, we finally get the full equivalent of

shared_ptr of C++. So we can create the cyclic ref to leak the memory!
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fn main() {
let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));

let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));

if let Some(link) = a.tail() {
*link.borrow_mut() = Rc::clone(&b);

}

println!("a next item = {:?}", a.tail());
}
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But how can we break the cycle? Weak<T> would be the solution. Instead of
creating the cycle, checking if the value has already been dropped in runtime is
needed. (Recall: weak_ptr of C++).
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