RSA
 procedure, correctness and security

Jingqi Chen

May 18, 2021

Contents

(1) Introduction
(2) Procedure
(3) Lemma
(4) Correctness Proof

What is RSA

- RSA is a public-key cryptosystem.
- It was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman; they won 2002 Turing Award.
- An equivalent system was developed secretly in 1973 at GCHQ, by Clifford Cocks.

Where are we using RSA

- Almost everywhere if encrypting / signing is needed.
- TLS, SSH, etc...

Create Keys

- Generate 2 distinct primes, p and q; they must be kept hidden, and they are commonly hundreds of digits long.
- $n=p q$
- Select $e \in[0 . . n), e \in \mathbb{Z}$ such that $\operatorname{gcd}(e,(p-1)(q-1))=1$.
- Public key is the pair (e, n), which should be distributed widely.
- Private key is $d \in[0 . . n]$, which is the inverse of e in the ring $\mathbb{Z}_{(p-1)(q-1)}$.

Encode and Decode

encode:

$$
\widehat{m}::=m^{e}\left(\mathbb{Z}_{n}\right)
$$

decode:

$$
m=\widehat{m}^{d}\left(\mathbb{Z}_{n}\right)
$$

Euler's

$$
\phi(n)=|\{k \in[0 . . n) \mid \operatorname{gcd}(k, n)=1\}|
$$

Euler's Theroem: $k^{\phi(n)} \equiv 1 \bmod n, \quad \operatorname{gcd}(k, n)=1$

Fermat's Little Theroem: $k^{p-1} \equiv 1 \bmod p, \quad p$ is prime $\wedge p \nmid k$

Proof of Euler's Theroem

let: $\mathbb{Z}_{n}^{*}=\{k \in[0 . . n) \mid \operatorname{gcd}(k, n)=1\}$
then: Euler's Theroem $\Longleftrightarrow \forall k \in \mathbb{Z}_{n}^{*}, k^{\phi(n)} \equiv 1 \bmod \left(\mathbb{Z}_{n}\right)$
lemma: $\forall k \in \mathbb{Z}_{n}, S \subset \mathbb{Z}_{n} ;|S|=|k S|$
hint: k is cancellable in \mathbb{Z}_{n}
then: $k \mathbb{Z}_{n}^{*}=\mathbb{Z}_{n}^{*}$
then: $k^{i} \mathbb{Z}_{n}^{*}=\mathbb{Z}_{n}^{*}, i \in \mathbb{Z}_{+}$
let: $P=\prod_{i=1}^{\phi(n)} k_{i}\left(\mathbb{Z}_{n}\right), k \in \mathbb{Z}_{n}$

Proof of Euler's Theroem - continue

$$
\begin{aligned}
Q & =\prod_{i=1}^{\phi(n)} k \cdot k_{i}\left(\mathbb{Z}_{n}\right), k \in \mathbb{Z}_{n} \\
& =k^{\phi(n)} P\left(\mathbb{Z}_{n}\right) \\
& =P\left(\mathbb{Z}_{n}\right) \\
& \rightarrow k^{\phi(n)} \equiv 1 \quad \bmod n
\end{aligned}
$$

Lemma

- n is a product of distinct primes.
- $a \equiv 1 \bmod \phi(n), a \in \mathbb{N}$
- then:
- $m^{a} \equiv m \bmod n$

Lemma Proof - if n is prime p

- $p \mid m$, the trivial case, both sides are 0 .
- $a \equiv 1 \bmod p-1$

$$
\begin{aligned}
m^{a} & =m^{1+k(p-1)} \quad \bmod n \\
& =m \cdot\left(m^{p-1}\right)^{k} \bmod n \\
& =m \cdot 1^{k} \quad \bmod n
\end{aligned}
$$

Lemma Proof - another lemma

- n is a product of distinct primes.
- and $a \equiv b \bmod p_{i}, p_{i}$ are all the prime factors of n
- then $a \equiv b \bmod n$

Lemma Proof - finally

- n is a product of distinct primes p_{i}.
- $\phi(n)=\prod_{i}\left(p_{i}-1\right)$
- $a \equiv 1 \bmod \phi(n) \Longleftrightarrow a=1+k \phi(n) \rightarrow a=1+k^{\prime}\left(p_{i}-1\right)$
- $a \equiv 1 \bmod p_{i}-1 \rightarrow m^{a}=m \bmod p_{i}$
- $m^{a}=m \bmod n$

Proof

- RSA correctness can be easily proved as it is just a special case of the previous lemma!
- $m^{d e}=m \bmod n$
- n is a product of p, q
- de $\equiv 1 \bmod \phi(n)$

